

User Manual

PCI5-ENC24G-U2-1x4 Gen5 PCIe/NVMe JBOF (1x4)

PCI5-ENC24G-U2-2x2 Gen5 PCIe/NVMe JBOF (1x4)

Gen5 JBOf

Board to Board Design

CHANGE HISTORY

REV	Date of Release	Description
0.8	Sep 2024	Initial Release

TABLE of CONTENTS

0	In	froc	Juc	tion

- 1.1 Overview
- 1.2 Specification

02 Hardware Description

- 2.1 Front Panel
- 2.2 Rear Panel

03 Installation guidelines

- 3.1 SSD Installation Guide
- 3.2 JBOF Connection Guide
- 3.2.1 P5-2425-S --- x4 mode
- 3.2.2 P5-2425-D --- 2x2 mode

04 MCU Cli Manager

- 4.1 Start-up Tera Term Screen
- 4.1.1 For the USB Serial Device
- 4.1.2 For the Telnet Con-nection
- 4.2 CLI Command

05 firmware Upgrade

- 5.1 Mcu Firmware Upgrade
- 5.2 Switch Firmware Upgrade

ATTACHMENT

a. Verify Signal Integrity

a.1 Verification Environment

b. Eye/cope

- b.1 P5-2425-S Slot 1-24
- b.2. P5-2425-D Slot 1-24

1.1 Overview

Description

P5-2425-S/ P5-2425-D is a high density U.2 JBOF board to board design that include two switch (PEX89088) controller boards , chassis , two CRPS power supplies , two ball bearings high CFM fans and 24 full heigh disk trays.

Features

All Support Remote Power On/Off Funtion

P5-2425-S x4 mode advance features for each drive

- a. power on / off control
- b. Dual_EN# control
- c. porta , portb reset control

P5-2425-D 2x2x mode advance features for each drive

- a. power on / off control
- b. disk reset control

1.2 Specification

Form Factor	EIA-310D 2U form factor
SSD I/F	SFF8639 U.2 form-factor, support single port and dual ports NVMe drivesl
PCIe Switch Board	Broadcom PEX89088
Power Supply	Two 800W 80 PLUS Titanium power supply
Dimension	2U 19" 19" 480mm (W) x 3.5" 88mm (H) x 14.2" 360mm (D)
System cooling	Two 80mm (W) x 80mm (H) x38mm (D) FANs
LEDs indication	SSD Activity (Blue), Present (White) and Fault (Red) LEDs per slot PSU Fault (Red) LEDs Controller Heart Beat Green LED System healthy (Red/Green) LED Upstream Port Indicate (Bule) LED Upstream Port Link not Matching (Red) LED

Introduction Specification

Rear I/O per switch board	Five QSFP-DD connectors Two USB Type C port for terminal RJ45 Ethernet 10/100 port, Blue button for power on/off/Mute function
System Alarm	Buzzer beeping for critical events (FANs, PSUs, over voltages and temperatures)
I/O Capability	Upstream bandwidth: One Upstream Port Connect: PCIe Gen5 x 16, 512 GT/s Two Upstream Ports Connect: PCIe Gen5 x 16 x2 1024GT/s maximum Four Upstream Ports Connect: PCIe Gen5 x 16 x4 2048GT/s
Downstream port	24 bays SSDs with PCIe Gen5 1x4 or 2x2
Serviceability	Hot-Swappable SSDs,Switch Controller, PSUs

Environment conditions Operating Temperature: 5C to 35C

Storage Temperature : -10C to 85C

Operating Humidity: 10% to 90% relative humidity non-condensing

Storage Humidity: 5% to 95% relative humidity non-condensing

Enclosure management CLI running in USB or Ethernet port

2.1 Components Description

Front Panel:

•• * different color of lights meaning

White LED: Power on and drive present

Blue LED : Drive access

Red LED : link abnormal(Not Gen5 x2 /Gen5 x4)

Left Side LED Blink indicate Left side fan abnormal

Right Side LED Blink indicate Right side fan abnormal

Rear Panel:

Blue LED : Upstream port

Green LED: Switch heart beat

Red LED: Link abnormal(Not Gen5 x16)

3.1 SSD Installation Guide

STEP 01

Remove the 24 bay JBOF enclosure from its packaging, and place the enclosure next to computer, server, or workstation.

STEP 02

Hold one of the U.2 drive trays from the enclosure and push its button downward for the release of the lever until the lever pops out.

Place a U.2 drive tray on a flat and level surface, and then attach the 2.5" U.2 NVMe SSD into the tray.

Adopt four of the screws provided, and fasten the U.2 NVMe SSD on the tray. Tighten each screw to fasten the U.2 NVMe SSD snugly to the drive tray. Do not tighten the screws overly.

X You must verify the heads of the four screws are level with the U.2 drive tray while the 2.5" U.2 NVMe SSD is attached to the tray; otherwise, a screw may take hold of the tray from the bottom side and prevent you to pull the tray out of the enclosure.

Insert the U.2 drive module into the NS388P enclosure correctly until its lever appears to shut, and then press the lever to close until it clicks to ensure that the U.2 drive module is within the enclosure.

X Do not force the levers to close while you insert U.2 drive modules into the enclosure. If a lever does not close smoothly, draw out and insert the U.2 drive module again, and then press the lever to close.

3.2 JBOF Connection Guide

3.2.1 P5-2425-S --- x4 mode

Condition 1: One host card connect to one JBOF

Condition 2: One host card connect to two JBOFs

Condition 3: Two host cards connect to one JBOF

Condition 4: Two host cards connect to two JBOFs

3.2.2 P5-2425-D --- 2x2 Mode

Condition 1: Two host cards connect to one JBOF

Condition 2: Two host cards connect to Two JBOFs

3.3 Install USB Driver

Download and install the synergy CDC driver.

X No USB driver is required for Windows 10 and Linux

Installation Guidelines Install USB Driver

Ports (COM & LPT)
Communications Port (COM1)
Communications Port (COM2)
Synergy USB Communications Port (COM17)

4.1 Start-up Tera term Screen

PCIe switch board uses the USB port as the serial port interface. Please use the USB type A male to Type C male cable to connect PCIe switch board to PC and operation system will detect a new "USB Serial Device". Please use this serial port to configure the PCIe switch board.

4.1.1 For the USB Serial Device

STEP

01

Install and launch Tera Term application. https://reurl.cc/qVjg00

STEP

Open Tera Term and make a new connection, you will see the USB Serial Device(COM).

To ensure proper communications between PCIe switch board and the Tera Term Terminal emulation, please configure the Tera Term Terminal emulation settings to the values shown below:

For "Port", select COM3 in this example.

(Depend on which COM port used on Host)

For "Baud rate", select 9600.

For "Data", select 8 bit. For "Parity", select none.

For "Stop", select 1 bit. For "Flow control", select: none.

Click OK when you have finished your selections.

Setup is complete. Please press ENTER, and you will see the cmd> command show as below:

4.1.2 For the Telnet Con-nection

STEP

01

Install and launch Tera Term application https://reurl.cc/qVjg00

Open windows Ethernet setting and press "Change adapter options". Enter here.

Please enter the Ethernet properties.

STEP

04

Setting the IP address like the picture below:

Type the IP "192.168.100.200" (default) in the host option Select "Telnet" in service option, press "OK" to start the telnet con-nection. You will see the cmd command.

4.2 CLI Command

This section provides detailed information about PCIe switch board's CLI function. Please type in lower case for all of commands.

Command	Descriptions
?	Show list of commands
<u>syspwr</u>	NVMe JBOF enclosure power ON/OFF control
<u>eth</u>	Ethernet IP configuration
dhcp	Ethernet DHCP function control
<u>setmac</u>	Set Ethernet MAC address
fdl	Update MCU FW
<u>lsd</u>	Show environmental info, including temperatures, FANs, PSUs, voltages
<u>dr</u>	Dump switch-specific registers.
dp	Dump switch port-specific registers.
<u>spwr</u>	Control the power of each U.2 slot.
srst	Reset each U.2 NVMe SSD
pwrdis	slot led control.
showport	Show link status for USP/DSP and slot.
<u>buz</u>	buzzer control.
<u>pwmctrl</u>	JBOF enclosure FANS speed control
<u>ver</u>	Show on-board mcu and PCIe switch F/W information.
sysinfo	Show system information.
<u>reset</u>	Reset switch controller board.

CLI Command 7

? Command

This command provides an on-line table of contents, providing brief descriptions of the supported command groups and built-in commands.

Type "?" to get detail information about the CLI commands summary.

Usage ?

Example cmd>?

```
Cnd Help Menu

spur:

NUMe JBOF enclosure power control.

- Usage: syspur tonioff]

eth:

Set Ethernet IP Configuration.

- Usage: eth (ipaddr(*)) (subnet(*)) (gateway(*))

dhop:

Enable DHCP.

- Usage: dhop (onloff)

***

**Write 32-bit data to register.

- Usage: mv (register(H)) (data(H))

- register(H): register should be 8.000000000 ~ 0xFFFFFFF data(H): register should be 8.000000000 ~ 0xFFFFFFF data(H): data should be 8.00000000 ~ 0xFFFFFFF data(H): data should be 8.000000000 ~ 0xFFFFFFF data(H): register should be 8.000000000 ~ 0xFFFFFFF data(H): data should be 8.000000000 ~ 0xFFFFFFF data(H): data should be 8.000000000 ~ 0xFFFFFFF data(H): data should be 8.0000000000 ~ 0xFFFFFFF data(H): data should be 8.0000000000 ~ 0xFFFFFF data(H): data should be 8.0000000000 ~ 0xFFFFFF data(H): data should be 8.0000000000 ~ 0xFFFFFF data(H): data(H):
```

CLI Command syspwr

syspwr Command

Switch board enclosure power control.

This command allows users to remote power ON/OFF the Switch board.

Usage syspwr on/off

Example syspwr on

CLI Command eth

eth Command

Ethernet IP configuration

Shows the Ethernet port configuration , etc. MAC address,
IP address, link status, gateway, MTU, DHCP.

Usage eth

Example cmd>eth

dhcp Command

Ethernet DHCP function control
Enable or disable DHCP function support for Ethernet port.

Usage

dhcp on/off

Example cmd>dhcp on

CLI Command setmac

setmac Command

Setting the MAC address to the Ethernet
To program any MAC address for testing purpose. The
new MAC address will be applied after MCU reset or
switch controller board power cycle.

Usage setmac <xx:xx:xx:xx:xx>

Example cmd>setmac 00:11:22:33:44:55

fdl Command

Update MCU FW
Sending the new FWs via XMODEM.
A few seconds for switch config or MCU FW updating.

Usage fdl mcu

Example cmd>fdl mcu

CLI Command Isd

Isd Command

Show environmental info, including temperature, FANs, PSUs, voltages.

Usage Isd

Example cmd>lsd

CLI Command Isd

Example cmd>lsd

```
Cmd>lsd
Thermal:
     Board Temperature :
                            28 degree
                            28 degree
BackPlane Temperature 1:
BackPlane Temperature 2:
                            28 degree
     PSU1 Temperature 1:
                            31 degree
     PSU1 Temperature 2:
                            29 degree
     PSU2 Temperature 1:
                           35 dearee
     PSU2 Temperature 2:
                            39 degree
                                            Switch FAN is the FNA for PCIe switch
ans Speed:
                            6584
             Switch Fan:
                                   rpn ·
                            3826
       Enclosure Fan 1 :
                                   rpn
                                            Fan1/Fan2 are the FANs located in
       Enclosure Fan 2 :
                            3676
                                   ngr
                                            the rear of en-closure
                            4768
               PSU1 Fan :
                                   rpn
                                            FAN sensor in two PSU
               PSU2 Fan :
                            2304
                                   rpn
Current Sensors:
           PSU1 Current :
                                   нЯ
                                            The current measure per PSU
           PSU2 Current :
                            2375
                                   нĤ
Voltage Sensors:
                 Voltage :
                              798
Board
                                    н۷
                 Voltage :
                              1315
                                    н۷
Board
                                            4 voltage sensors
                 Voltage :
                              1818
                                    н۷
Board
                 Voltage:
                              1825
                                    н٧
Board
                 Voltage :
BackPlane 3.3V
                             3456
                                    н۷

    Two voltage sensors on blackplane

BackPlane 1.8V
                 Voltage:
                              1792
                                    н۷
SU1
                             12125 нV
                 Voltage :
            12V
                                            12Volts output monitoring per PSU
            12V
PSU2
                 Voltage :
                             12062 HV
```

CLI Command dr

dr Command

Dump switch-specific registers.

Usage

dr <SW address>

Example cmd>dr 0xfff00000

```
COM8 - Tera Term VT
文件(F) 編輯(E) 設定(S) 控制(O) 視窗(W) 幫助(H)
Cmd>dr Oxfff00000
ff00000:c0301000 000000b0 0010b023 10100c10
ff00010:00000240 00000003 00000001 00000011
 100020:00000000 06430020 00000000 00000000
ff00040:2801143c 00000000 00000041 bb006400
ff00050:5e00bb1e 00000000 28000002 00000000
ff00060:00000041 bf006400 00000000 00000000
ff00070:5e000001 5e000001 80000110 80000110
ff00080:80000110 80000110 80000110 80000110
ff00090:00000000 00000001 00020002 0023c000
ff000a0:80000000 00000000 00000000 00000000
ff000b0:00000001 00000044 c0001804 00000000
ff000c0:00000800 00000000 00000000 00000a25
Cmd>dr Oxfff00000 20
ff00000:c0301000 000000b0 0010b023 10100c10
ff00010:00000240 00000003 00000001 00000011
Cnd>[]
```

CLI Command dp

dp Command

Dump switch port-specific registers.

Usage dp <port(0~142)>

Example cmd>dp 96

```
COM8 - Tera Term VT
文件(F) 編輯(E) 設定(S) 控制(O) 視窗(W) 幇助(H)
Cnd>dp 96
60860000:c0301000 00100000 060400b0 00010000
60860010:00000000 00000000 00929200 000001f1
60860020:0000fff0 0001fff1 00000000 00000000
60860030:00000000 00000040 00000000 00000100
60860040:c8034801 00000008 03866805 00000000
60860060:00000000 00000000 0052a410 00008004
60860070:00000810 6042ed05 00850000 00000000
60860080:00000000 00000000 00000000 00350860
60860090:00000000 81803f3e 011e0005 00000000
608600a0:00000000 0000000d 01041000 00000000
60860100:fb410003 dc87cb08 00805e86 00000000
60860110:db42001e 00000000 00000000 00000000
60860120:00000000 00000000 00000000 00000000
60860130:00000000 00000000 db410004 00000000
60860140:00000000 00000001 af410002 00000c00
++nnnne ennnnen nnnnnnn nannnne ennnnn++
```

spwr Command

The command is for controlling the 12 volts power of each U.2 NVMe drive slot.

Usage spwr <slot(1~24)> <on/off>

Example cmd>spwr 8 on

srst Command

To generate an around 350ms "L" duration in PERST# signals in U.2 slot. A channel means ePERST0# in U.2 Pin E5 for 1st PHY of dual port drives. B channel means ePERST1# in U.2 Pin E4 for 2nd PHY of dual port drives.

Usage

srst < slot(1~24) >

Example cmd>srst 8

```
M COM11 - Tera Term VT
文件(F) 編輯(E) 設定(S) 控制(O) 視窗(W) 幫助(H)
Chd>srst 8
Reset slot 8 success
Chd>[]
```

CLI Command buz

pwrdis Command

Set PWRDIS in U.2 as "H" or "L" state.

Set pwrdis in slot pin3 level to high/low.

Set PWRDIS to "H" state to disable SSD power.

Set PWRDIS to "L" state to enable SSD power.

Usage

pwrdis <slot(1~24)> <h/l>

Example cmd>pwrdis 8 h

showport Command

Show link status for each USP/DSP slot.

Usage showport

Example cmd>showport

```
MI COM 11 - Tera Term VT
文字D 無難(E) 設定(S) 经元(D) 被至(W) 年起(H)

Codehosport

Board Position: 80TMH

Mine Slot

Slot (S): present No. speed (D, width (D, partition (D)

Slot (S): present No. speed (D, width (D, partition (D)

Slot (S): present No. speed (D, width (D, partition (D)

Slot (S): present No. speed (D, width (D, partition (D)

Slot (S): present No. speed (D, width (D, partition (D)

Slot (S): present No. speed (D, width (D, partition (D)

Slot (S): present No. speed (D, width (D, partition (D)

Slot (S): present No. speed (D, width (D, partition (D)

Slot (S): present No. speed (D, width (D, partition (D)

Slot (S): present No. speed (D, width (D, partition (D)

Slot (S): present No. speed (D, width (D, partition (D)

Slot (S): present No. speed (D, width (D, partition (D)

Slot (S): present (No. speed (D, width (D, partition (D)

Slot (S): present (No. speed (D, width (D, partition (D)

Slot (S): present (No. speed (D, width (D, partition (D)

Slot (S): present (No. speed (D, width (D, partition (D)

Slot (S): present (No. speed (D, width (D, partition (D)

Slot (S): present (No. speed (D, width (D, partition (D)

Slot (S): present (No. speed (D, width (D, partition (D)

Slot (S): present (No. speed (D, width (D, partition (D)

Slot (S): present (No. speed (D, width (D, partition (D)

Slot (S): present (No. speed (D, width (D, partition (D)

Slot (S): present (No. speed (D, width (D, partition (D)

Slot (S): present (No. speed (D, width (D, partition (D)

Slot (S): present (No. speed (D, width (D, partition (D)

Slot (S): present (No. speed (D, width (D, partition (D)

Slot (S): present (No. speed (D, width (D, partition (D)

Slot (S): present (No. speed (D, width (D, partition (D)

Slot (S): present (No. speed (D, width (D, partition (D)

Slot (S): present (No. speed (D, width (D, partition (D)

Slot (S): present (No. speed (D, width (D, partition (D)

Slot (S): present (No. speed (D, width (D), partition (D)

Slot (S): present (No. speed (D, width (D), partition (D)

Slot (S): present (No. speed (D, w
```

CLI Command buz

buz Command

This command is for setting the buzzer of PCIe switch board. Buzzer control

Usage buz <on/off/en/dis>

Example cmd>buz on

pwmctrl Command

JBOF enclosure FANS speed control(use percentage)

Usage

pwmctrl <fan(1~2)> <speed(30~100percentage)>

Example cmd>pwmctrl 150

```
M COM11 - Tera Term VT
文件(F) 編輯(E) 設定(S) 控制(O) 視窗(W)

Chd>punctrl 150
Setting fan1 success!
Chd>[]
```

CLI Command ver

ver Command

Show on-board MCU and PCIe switch F/W information.

Usage ver

Example cmd>ver

CLI Command

JBOF (control board) Version One atlas2 version

5 JB 088 1 2407 1 001

Gen 5 88 lanes Warranty Period (Year/Month) Serial Number

JBOF (control board) Original Version

atlas2 version

5 JB B X4 0 2407 1 001

Gen 5

Backplace

Warranty Period (Year/Month)

Serial Number

sysinfo Command

Show system information

Sysinfo command is for switch board enclosure diagnostic, it combines ver, lsd, showport command

Usage sysinfo

Example cmd>sysinfo

reset Command

reset switch controller board MCU reset and the MCU will have PCIe switch power on reset.

Usage reset

Example cmd>reset

5.1 Mcu firmware upgrade

STEP

01

Type "fdl mcu" on command line, you will see the picture in below.

STEP

02

Click on the file, scroll down to Transfer, and select "XMODEM" on the second frame, you will see the sent.

STEP 03

Makesure the file you sent is bin. (the latest version firmware please download on official websites.)

STEP **04**

You will see this picture which means the firmware is already upgrading.

Please reset the system when it complete, and you can enjoy the latest firmware.

5.2 Switch firmware upgrade

Please contact Utran to get the password.

Connect the USB Type-C port(Reserved)

STEP 02

Open the G4XTOOLS file, there are two files named Windows / LINUX, select your system to get one of them in. Here will take Windows for example, click windows file.

Download the .fw file on the website, and open CMD Command, replicate your .fw file, then go back to G4XTOOLS file. You can use cmd command to enter the specified path where your firmware file located in, and paste the .fw file you just replicated.

STEP **04**

Type >start g4Xdiagnostics_x64.exe -sdb com "numder" on the last line. The numder filled in is depend on your device manager. You can see boardcom switch name after you press "enter".

```
Microsoft Windows [版本 10.0.19045.4529]
(c) Microsoft Corporation、著作權所有,並係留一切權利。
C:\Users\kevin>cd C:\Users\kevin\Desktop\user_fw\G4XTOXLS\Windows>
C:\Users\kevin\Desktop\user_fw\G4XTOXLS\Windows>start g4Xdiagnostics_x64.exe -udb com19

III C\Users\kevin\Desktop\user_fw\G4XTOOLS\Windows\g4Xdiagnostics_x64.exe
g4Xdiagnostics v4.15.0.0 - Broadcom Inc. (c) 2024 (B1d-85.52.34.106.16.0)

PEX89104 B0>
```

STEP 05

Type >dl -p ".fw file" -o 0x0 on the first line of the second paragraph.

```
ECyUsers\kevir\Desktop\user_fw\G4XTGOLS\Windows\g4Xdlagnostics_x64.exe

g4Xdlagnostics v4.15.0.0 - Broadcom Inc. (c) 2024 (Bld-85.52.34.106.16.0)

PEX89104 BD> dl -p v_001.fw -o 0x0

PEX89xxx SPI access acquired (Firmware has been put on IDLE state)

Flash data will be erased from offset 0 for 1077496 bytes.

Do you want to continue (Yes / No) : yes
```

X Do not shut down your device during the program update.

Restart it when update is complete, and the brand new firmware will be ready for enjoying.

ATTACHMENT

ATTACHMENT

Verify Signal Integrity

Verification Software

Boardcom ARCTIC -12.18247

Verification conditions

Error bit rate 10^-18

All lanes passed

Signal Flow

All Lanes Passed

Upstream port captured signal path

Downstream port captured signal path

ATTACHMENT

b.1 P5-2425-S Slot 1-24

Eyescope Diagrams / JBOF x4 / slot 1

lane 0

lane 1

lane 2

lane 3

Eyescope Diagrams / JBOF x4 / slot 2

lane 4

lane 5

lane 6

lane 7

Eyescope Diagrams / JBOF x4 / slot 3

Eyescope Diagrams / JBOF x4 / slot 4

lane 12

lane 13

lane 14

lane 15

Eyescope Diagrams / JBOF x4 / slot 5

lane 20

lane 22

lane 21

lane 28

lane 29

lane 30

lane 31

lane 36

lane 37

lane 38

lane 39

lane 44

lane 45

lane 46

lane 47

lane 28

lane 29

lane 30

lane 31

lane

lane

lane

lane

b.2 P5-2425-D Slot 1-24

JBOF 2x2 / slot 1 / Top Controller

JBOF 2x2 / slot 1 / Bottom Controller

JBOF 2x2 / slot 2 / Top Controller

JBOF 2x2 / slot 2 / Bottom Controller

JBOF 2x2 / slot 3 / Top Controller

JBOF 2x2 / slot 3 / Bottom Controller

JBOF 2x2 / slot 4 / Top Controller

JBOF 2x2 / slot 4 / Bottom Controller

JBOF 2x2 / slot 5 / Top Controller

JBOF 2x2 / slot 5 / Bottom Controller

JBOF 2x2 / slot 6 / Top Controller

JBOF 2x2 / slot 6 / Bottom Controller

JBOF 2x2 / slot 7 / Top Controller

JBOF 2x2 / slot 7 / Bottom Controller

JBOF 2x2 / slot 8 / Top Controller

JBOF 2x2 / slot 8 / Bottom Controller

JBOF 2x2 / slot 9 / Top Controller

JBOF 2x2 / slot 9 / Bottom Controller

JBOF 2x2 / slot 10 / Top Controller

JBOF 2x2 / slot 10 / Bottom Controller

JBOF 2x2 / slot 11 / Top Controller

JBOF 2x2 / slot 11 / Bottom Controller

JBOF 2x2 / slot 12 / Top Controller

JBOF 2x2 / slot 12 / Bottom Controller

JBOF 2x2 / slot 13 / Top Controller

JBOF 2x2 / slot 13 / Bottom Controller

JBOF 2x2 / slot 14 / Top Controller

JBOF 2x2 / slot 14 / Bottom Controller

JBOF 2x2 / slot 15 / Top Controller

JBOF 2x2 / slot 15 / Bottom Controller

JBOF 2x2 / slot 16 / Top Controller

JBOF 2x2 / slot 16 / Bottom Controller

JBOF 2x2 / slot 17 / Top Controller

JBOF 2x2 / slot 17 / Bottom Controller

JBOF 2x2 / slot 18 / Top Controller

JBOF 2x2 / slot 18 / Bottom Controller

JBOF 2x2 / slot 19 / Top Controller

JBOF 2x2 / slot 19 / Bottom Controller

JBOF 2x2 / slot 20 / Top Controller

JBOF 2x2 / slot 20 / Bottom Controller

JBOF 2x2 / slot 21 / Top Controller

JBOF 2x2 / slot 21 / Bottom Controller

JBOF 2x2 / slot 22 / Top Controller

JBOF 2x2 / slot 22 / Bottom Controller

JBOF 2x2 / slot 23 / Top Controller

JBOF 2x2 / slot 23 / Bottom Controller

JBOF 2x2 / slot 24 / Top Controller

JBOF 2x2 / slot 24 / Bottom Controller

